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LABORATORY STUDIES OF STEEP AND BREAKING DEEP WATER 

WAVES IN A CONVERGENT CHANNEL 

1. INTRODUCTION AND BACKGROUND 

For more than a century hydrodynamicists have been exploring the non- 

linear behavior of ocean surface waves, with one special goal being a 

rationale for and a description of the catastrophic nonlinearity commonly 

known as wave breaking. The breaking of ocean waves, either occuring 

naturally in ambient seas or forced as in shoaling waters and in 

interactions with man-made structures, is a common observation and an 

important element of many oceanographic, coastal and ocean engineering 

problems. Wave breaking is also an important consideration in surface ship 

hydrodynamics. The wave resistance of a ship is influenced by the breaking 

of the ship's bow wave. In addition, the wake energy balance and the 

ensuing white water production must account for wave breaking. 

Several significant advances toward an understanding of wave breaking 

have been made in recent years. These include the experimental character- 

ization of instability mechanisms which can lead to wave breaking, mathe- 

matical models for these instability mechanisms, and numerical simulations 

of wave overturning and incipient breaking. Empirical and semi-empirical 

models have been proposed to describe the breaking of steady waves generated 

by the relative motion between the water and submerged bodies or to describe 

the later stages of spilling breakers, tidal bores, and hydraulic jumps. 

Much is still unknown, however, including such simple information as a 

criterion for the onset of breaking. 

Manuscript approved April 15, 1985. 



1 • 1 Wave Breaking in Deep Water Wave breaking in deep water has drawn 

increasing attention from numerous investigators with concerns ranging from 

the improvement of ship performance and safety, or the prediction of forces 

on marine structures, to a better understanding of the fundamentals of the 

nonlinear surface wave phenomena which lead to wave breaking. The causes of 

wave breaking are varied and often are reflected in the manner in which a 

wave breaks; from gentle spilling at the crest to sometimes spectacular 

curling and plunging of the forward face of the wave. In deep water, the 

most common breakers are spilling, and, in the presence of sufficient wind, 

white-capping. Studies of wave breaking generally focus first upon the 

conditions which correspond to the onset of breaking. This is often 

followed by the examination of particular wave characteristics of importance 

to the application at hand. 

Recent studies of deep water breaking have largely dealt with the 

growth of subharmonic instabilities of steep, initially regular waves that 

lead  to  two and three-dimensional  spilling breakers.   A summary and 

discussion of this material is given by Griffin (1984).  In these recent 

studies  a uniform wave  train of  initial steepness s  = a k  evolves  to 
o   o o 

breaking. Here a is the wave amplitude, k = 2 ir/L is the wavenumber based 

on wavelength L and the subscript is used to denote initial values. On 

comparison of the experiments performed by Kjeldson et al (1978,1979,1980), 

Melville (1982) and Su et al (1982,1984); and with the analyses of Longuet- 

Higgins (1978b), Cokelet (1979), Vinje and Brevig (1981), and McLean et al 

(1981) there is generally good agreement that the following processes take 

place. For 0.15 < s < 0.25 the evolution to breaking is essentially two- 

dimensional with the instabilities corresponding to the most unstable modes 

predicted by Longuet-Higgins (1978b) versus the classical Ben,iamin-Feir 

analysis (1967). For 0.25 < s < 0.35 two dimensional disturbances quickly 

give way to three-dimensional crescent-shaped breakers which ultimately are 

transformed into a long-crested wave system with lower steepnesses and 

frequencies. 



The profiles of the breaking waves photographed by Melville at ak < 0.3 

show general agreement with the numerical solutions of Longuet-Higgins and 

Cokelet and with those of Vinje and Brevlg (1981), and can be used to 

interpret not only the wave motion before breaking but also the wave motion 

in the breaking region. 

One of the dismaying features of these results is that the manner of 

breaking is not specified. In fact, the numerical simulations generally 

predict plunging breakers while the experiments produce spilling breakers 

with only occasional mildly plunging breakers. To classify the breaking 

waves Kjeldsen et al introduced several non-dimensional wave steepness 

parameters. The most important was thought to be the so-called "crest front 

steepness", or 

£ = JT . (1.1.1) 

where a' is the vertical distance from the mean water level to the wave 

crest and X' is the horizontal distance from the zero upcross point on the 

wave to the wave crest. The crest front steepness was considered to be more 

representative of the asymmetric profile of an overturning wave, as compared 

to the more usual wave steepness, ak. Typical values of z for the breaking 

wave experiments of Kjeldsen et al were in the range 

0.32 < e < 0.78. 

The highest values of e corresponded to plunging breakers, while spilling 

breakers were of lower steepnesses.   In the present study we define a 

symmetry parameter, a,    to be one-half of the wavelength divided by the 

horizontal distance from the crest to the preceding trough. 

Another difficulty with the existing instability calculations is the 

somewhat ambiguous nature of the criterion for wave breaking.  Waves with 

identical initial steepnesses in the range 0.10 < s <   0.15 may or may not 

break, and in the range 0.15 < s <  0.25 the eventual location and form of 
o 

breaking can vary significantly, depending upon the initial value of 

s = a^ •   These variations are expected on the basis of Longuet-Higgins' 

analysis, and this is one reason why his contribution is so impressive.  It 

cannot, however, address the general problem of the breaking of ocean waves 



where the time scales for the growth of weak instabilities may exceed the 

characteristic times for stationarity and almost certainly exceeds the time 

scales for interactions among various spectral components which may be 

travelling in different directions. The present experiments were conducted 

to address this issue through studies of the breaking of waves which are 

growing under an external influence. 

1.2 Previous Convergent Channel Experiments Van Dorn and Pazan (1975) 

conducted a systematic laboratory study of deep water wave breaking. A 

convergent section was installed inside a wave channel to increase the 

steepness of the wave train. The convergence of the channel was 1:10 over a 

length of 19m (62.3 ft) followed by a narrow uniform section 0.5m (1.6 ft) 

in length by 0.52m (1.7 ft) in width. The water depth in the channel was 

varied with the wave period in order to insure the generation of deep water 

waves. 

\Then the local wave steepness was less than ak = 0.3 the wave profiles 

remained approximately symmetric and Stokes' fifth-order wave theory gave a 

good description of the wave properties. This was called the "young" wave 

regime. For wave steepnesses between 0.3 < ak < 0.38 the wave profiles 

became increasingly asymmetric with a steep forward face. Most of the 

change in the profile was confined to that portion of the wave above the 

still water level. The rate of increase of potential energy density along 

the channel before breaking was inversely proportional to the channel width 

because the experiments were done with a 'burst' of waves before a mean flow 

could be established. Thus the energy flux was simply conserved. This was 

called the "pre-breaking" regime. 

Wave breaking occurred spontaneously when 0.38 < ak < 0.44. The 

forward face of the wave became nearly vertical and a jet of water issued 

from the forward face just below the crest. This appears to be similar in 

character to the overturning process which precedes the plunging of a 

breaker. The maximum jet velocity approached the limiting value c■r/^ = 

1.2 g/w for Stokes waves of maximum height.  This was called the "breaking" 



regime by Van Dorn and Pazan.  Table 1 summarizes the characteristics of the 

three wave regimes. ■ 

■ Table 1 

DEEP WATER WAVE BREAKING IN A CONVERGENT CRANNEL"^ 

Wave Steepness 

ak<0.3 
Wave Characteristics 

"Young" waves-symmetric about the 

crest; Stokes' fifth-order theory 

applies. 

0.3<ak<0.38 "Pre-breaking" waves-asymmetric waves 

with steep forward faces; streamlines 

distorted. 

0.38<ak<0.44 "Breaking" waves-vertical forward 

face of the wave; overturning and 

plunging of the waves. 

From Van Dorn and Pazan (1975). 

The wave steepnesses at breaking in Table 1 are higher than those 

observed by Melville (1982), Su et al (1982, 1984), and by Duncan (1983). 

The convergent walls of the channel together with the transient nature of 

the experiment may have led to breaking before the instability mechanisms 

naturally could produce a breaker as discussed in the previous section. 

The breaking intensity, defined by Van Dorn and Pazan in terms of the 

potential energy loss  rate,  was  correlated with  the potential energy 



increase before breaking. The energy dissipation due to breaking 

(normalized by the product of wave frequency and mean wave energy) was 

approximately a linear function of the growth rate of the waves. This led 

Van Dorn and Pazan to suggest that history effects were likely to be 

important in any deterministic theory for wave breaking. In addition it was 

found that the energy losses after wave breaking were in equilibrium with 

the energy input due to the convergent channel. These findings are not in 

complete agreement with the present results. 

More recently Kjeldsen and Myrhaug (1979,1981) conducted experiments in 

a wave channel which contained a convergent section with a slope of 1:23. 

The purpose of the experiments was to study the impact pressures due to 

breaking waves acting on submerged plates. In all cases the waves were deep 

water spilling breakers. Shock pressures were observed to occur for both 

spilling breakers and for steep non-breaking waves. The magnitudes of the 

shock peaks were a function of the ratio s:/s of the crest front 

steepness s and the total steepness s. No deep water wave breaking criteria 

were derived from these experiments. 

1*3 Conservation Relations The conservation of mass and energy fluxes in a 

convergent laboratory channel is complicated both by the convergence and by 

the finite length of the channel. Wave energy is reflected and the net mass 

flow through a vertical plane is constrained to be zero at any location in 

the channel.  The latter condition leads to the simple relation 

a    = - mid (1.3.1) 

by assuming that the rate of convergence is small enough for a slowly 

varying, nearly one-dimensional flow approximation. Here m is the local 

wave-induced mass flux, U is the local depth-averaged mean return current 

and (wd) is the mean local area given by the product of local width w and 

mean depth d. The experiments by Van Dorn and Pazan attempted to avoid this 

complication by generating a 'burst' of waves, and then taking data after 

the initial wave transients, but before the finite channel length could 

exert any influence.  That approach raises questions of stationarity for the 
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interim steady-state which is assumed to exist. For our experiments it was 

observed that a steady-state was often difficult to reach even for constant 

input parameters.  This is discussed later in some detail. 

For the convergent, finite length channel with steady generation of 

waves we assume that the energy flux is governed by 

3 3U^ 
3— [(u.+ c JE] + S. . r— 
ox.   1  gi^ -■ 11 3 X 

1       ^ i 

= 0 (1.3.2) 

where U^ is the depth-averaged mean flow in the ith direction, C_-- is the 

group velocity, E is the total wave energy, and S^. is the radiation 

stress. This equation stems from an energy balance for the fluctuating 

motions (Phillips, 1977) where the flow is steady in the mean and 

dissipation is neglected. We further assume that the flow in a slowly 

convergent channel is effectively one-dimensional and then apply Equation 

(1.3.2) to a differential element of the convergent channel as shown below. 

-*| dx I*- 

TT 
w 

^x 

L-i-j 

Integration and application of Green's theorem yields the relation 

^[EW(U+C/2)] +W|^= 0 dx (1.3.3) 

where the substitutions S^^ = E/2 and Cg = C/2 have been made for deep water 

conditions. The channel width w is a slowly varying function of x. If the 

mean flow U is ignored or absent the conservation requirement reduces to 

^  [Ew C/2] = 0 (1.3.4) 



or 

CEw = Fw = constant (1.3.5) 

where F = CE is the energy flux.  This is the conservation equation employed 

by Van Dorn and Pazan under the assumption that their data were obtained 

before a mean flow could be established.  This is a reasonable assumption as 

Stated, but it overlooks the influence of time dependent 5—  terms dropped 

earlier.   These may become significant locally and therefore may markedly 

influence any transitional events such as wave breaking.  On the basis of this 

simple relation Van Dorn and Pazan introduced a growth rate G = - LJ-^ /w to 

express the amplification within their channel.  Here L^= 1.2gl2/2ir is the 

Stokes  limiting wavelength  (Michell,  1893),  which has  the advantage of 

simplicity while approximating the actual wavelength near breaking.  We will 

retain the use of L* and G in the presentation of our results, but the 

physical  significance  of  G  is  reduced  to  a  non-dimensional  channel 

convergence.  It is useful in that sense because it describes the rate of 

convergence experienced by a wave in the distance of one wavelength L^. 

The full conservation relation in Equation (1.3.3) can be integrated 

exactly to give 

Ew (U+C/2) = constant (1.3.6) 

for the conserved quantity in our wave channel. 

2. THE WAVE CHANNEL FACILITY AND EXPERIMENTAL METHODS 

2-1 The Wave Channel System The facility used in the experiments is the 

wave channel described by Griffin and Plant (1982). The channel is 3Gm long 

and 1.3m wide with about 1.0m of mean water depth. A section of side of the 

channel is constructed of clear acrylic panels. Several additional viewing 

locations are available through the channel floor and through the opposite 



wall. The waves are generated at one end by a bulkhead wavemaker powered by 

a variable speed D.C. motor. Waves are absorbed at the downstream end of 

the channel by a porous sloping beach covered with layers of packing 

material. 

For the present experiments a convergent section was constructed as 

shown schematically in the bottom of Figure 1. During the initial testing 

of the facility the wavemaker bulkhead remained normal to the original walls 

and the uniform test section was terminated just short of the beach. The 

premise for this arrangement was that the straight channel wall represented 

a plane of symmetry to the wave system. Large reflections and crosswaves 

were observed with this arrangement and these were greatly reduced by 

canting the wavemaker surface normal to the converent channel centerline and 

by extending the uniform section to the wave absorbing beach at the end of 

the channel. Although this greatly reduced the crosswaves and reflections, 

measurable levels of both remained throughout the experiments. Their 

influences upon the results are discussed in later sections. 

2-2 Waveheight Measurements The water surface elevations in the channel 

were obtained from two capacitance-type wave probes mounted on an overhead 

carriage that moved under computer control. The carriage paused at twenty 

two locations in addition to the start and stop positions. At each position 

eight consecutive wave cycles of data were recorded and digitized for both 

probes. Several runs were conducted without carriage movement to indicate 

the stationarity of the experiment. The sampling rate was fixed at twenty 

five points per wave period in relationship to the wavemaker motion 

signal. The wave probes were statically calibrated before and after each 

run. The results obtained from one probe indicated an electronic error 

which was corrected in the data processing after some careful dynamic 

calibrations of the offending device. 

The experiments were conducted at seven wave periods and at a variety 

of wavemaker strokes as listed in the Appendix. The strokes were chosen at 

the outset of each series to obtain data for wave amplification without 

breaking.  The wavemaker stroke was  then gradually  increased to yield 



breakers at various locations in the channel.  Figure 1 contains a plot of 

the averaged waveheight H(x)  along the channel  divided  by  the wavemaker 

-   1  ^ stroke S for a typical moving carriage run.  Here H = — J  H(x) which is 
^ i = l 

the average of eight consecutive crest-to-trough measurements at each probe 

location.  The dashed line in the figure represents the wave amplification 

predicted from the simple conservation of energy (H(x) ~ width"^'^) and 

linear wavemaker theory. 

A number of important features of the experiments and the present 

analysis are illustrated in this figure. The first is the occurrence of a 

standing wave pattern owing to partial reflection of the waves from the end 

of the channel. The magnitude of the reflected wave component is generally 

five percent or less. A second effect is demonstrated by the discrepancy 

between the wave amplitudes recorded by the two probes in Figure 1 over the 

same section of the channel near x = 29 ft (8.8m). This discrepancy stems 

from temporal modulations of the waves at a subharmonic of the wave 

frequency and from slowly varying conditions in the channel. The third 

effect is a measured wave amplification which is generally less than the 

theoretical prediction. This behavior was observed in all cases to varying 

degrees and is due to the combination of finite amplitude waves and a 

steady-state reverse flow in the closed channel as discussed in Section 

1.3. A fourth effect, due to wave breaking, is the decay of the wave 

amplitude along the channel following the onset of breaking which usually 

occurs near the end of the convergent section. This decay is a direct 

measure of the energy lost in breaking. The fifth effect is the presence of 

crosswaves which are shown rather dramatically in Figure 2a near x = 22 ft 

(7m). The probes traversed the channel along the straight wall and 

therefore were very sensitive to crosswaves. The maximum crosswave occurred 

at a channel width equal to one-half of the local wavelength and then 

decayed rapidly on either side of the maximum as indicated in the figure. 

In the other runs the crosswave maximum was beyond the measurement interval. 

Not only do these effects occur together but also they influence one 

another.  The location of the wave breaking in the channel was influenced by 

10 



both the temporal variations and the spatial modulations due to the reflec- 

tions. These in turn are influenced by changes in the wave breaking. In 

many cases a steady-state was never reached. Conditions could be chosen so 

that the waves would, over a period of 20 to 30 minutes, evolve from an 

incipient breaking condition to fully breaking and back again. We attempted 

to record the data in these instances during the periods when breaking waves 

existed in the channel. Exceptions to this behavior were noted for the 

subsequent processing of data. 

The processing of the data included removal of the spatial variations 

due to reflections and due to crosswaves in order to obtain smoothed 

functions of H(x) for comparison with various predictions and theories. 

These results for all runs are plotted in Figure 2. Short period 

modulations of H(x) were largely removed through the use of H(x), whereas 

longer term variations remained in the data and could only be accounted for 

qualitatively in the interpretation of results. 

2.3 Fluid Velocity Measurements The primary velocities of interest here 

are the mean flow velocities in the channel because of the scarcity of such 

data. The fluctuating motions in the waves have been investigated elsewhere 

and appear to be reasonably well-described by several available theories and 

numerical models. The exceptions occur in and near the breaking region of 

the wave where measurements of any sort are difficult, so that poor 

comparisons may not be a failure of the theory. The wave-induced mean 

velocities are small and often are contained within much larger fluctuating 

motions over a major portion of water column. Therefore we elected to 

measure the mean motions via the movement of a slightly buoyant tracer 

particle. A multiple exposure photograph of a rising polystyrene bead in 

waves is shown in Figure 3. Similar photographs were taken several times 

during a test run, always in the same location along the convergent channel 

(x = 27 ft or 8.2m). The bead motion near the surface was generally lost in 

the multiple exposures of the instantaneous free surface. In the future the 

procedure could be improved by shading the camera from this region until 

just before the bead enters. 

11 



The sequence of bead locations together with several reference 

locations from the background grid (white lines) and the near wall (black 

crosses) were digitized using a graphics tablet interfaced to a small desk- 

top computer. The perspective of the photographs was determined and the 

bead positions vjere calibrated as shown, for example, by the data in 

Figure 4 which corresponds to the photograph in Figure 3. The bead was 

assumed to remain in the midplane of the channel after a number of 

preliminary tests indicated this to be a reasonable assumption. It would 

not be very difficult to add a stereoscopic view for wave flows that contain 

significant transverse motions. The digitization process also could be 

readily automated using digital video techniques. 

The mean velocity in the channel was assumed to have two contributions: 

a wave transport U^ to the right which decayed exponentially with depth and 

a uniform return flow U which gave a net mass transport of zero at any 

location along the channel. These mean motions could be removed from the 

data to yield the wave-induced velocities, but this effort was discontinued 

in view of the lack of near surface data and preliminary comparisons with 

theory as shown by the solid line in Figure 4. There the linear wave theory 

compares well with the data when it is corrected to include the mass 

transport, the buoyancy of the bead and the measured return flow in the 

channel. Differences which existed between the linear theory and higher- 

order theories at these depths were well within the accuracy of the data, 

since the velocities were found from differences between data points 

(position) and therefore the velocity results were prone to be more 

scattered. 

2.4 Visual Records of Wave Breaking Still photographs of the instantaneous 

wave profile in the uniform test section were taken to identify features of 

the breaking process which might escape detection by the wave height 

probes. A typical photograph is shown in Figure 5. The wave is illuminated 

from below using a standard fluorescent lighting tube. The tube became 

imaged in the meniscus at the wall of the flume and in the free surface of 

the wave.  The horizontal white line in the photograph is the meniscus of 

12 



the still water behind the uniform test section and serves as a reference 

for the measurenients since the entire wavelength was not always captured in 

the photograph. The contrast in these photographs was adequate for 

digitization using a video system. The wave profile and the dimensions of 

the 'white-water' region were retained to yield local slopes and overall 

features of the breaking region. This technique could be refined in the 

future to yield details of the breaking region such as local void fractions 

and entrained bubble or white water characteristics. Most of the required 

improvements are in the methods of illumination and could be obtained 

through the use of narrow sheets of light and possibly certain dyes as done 

by Duncan (1981, 1983). 

During the final experiments a video camera set to one side of the work 

area recorded the overall wave pattern in the channel at the time. This 

provided a permanent visual record of intermittent breaking events to 

augment the data acquisition sequence from the wave probes. In this way we 

could permanently catalog various locations and types of breaking in 

conjunction with the recorded wave heights which do not always readily 

distinguish between breaking and non-breaking waves or between the various 

types of breakers. This is a common problem with conventional wave probes 

and it stems from limitations in amplitude resolution and frequency 

response. The best solution to these difficulties may be to utilize optical 

methods to obtain all of the wave breaking data. Video devices which can 

accomplish this are becoming available. 

3.  EXPERIMENTAL RESULTS AND DISCUSSION 

3.1 Steep, Non-breaking Wave Characteristics The first and simplest 

comparison between the observed and predicted nonlinear wave characteristics 

is shown in Figure 6 where the ratio of the measured phase speed to the 

linear theory prediction is plotted versus the measured wave steepness 

H/L^. The measured phase speeds shown in the figure were determined simply 

from the time required for an individual crest to travel between the two 

13 



wave probes. This was plotted versus the steepness at the midpoint between 

the probes. The third-order Stokes prediction is shown in the figure as the 

solid line while the dashed line represents the apparent third-order phase 

speed as if it were determined in the same manner as the experiment, i.e. 

averaged over the same growth interval and plotted at the midpoint wave 

steepness. The overall agreement is good. The scatter, particularly at low 

values of steepness, is mostly due to the cross waves in the channel which 

can introduce significant timing errors for the local wave elevation 

maximum. The general agreement with the third-order phase speed carries the 

requirement for similar agreement with the third-order wavelength. 

A typical plot of a very steep, symmetrical wave profile is shown in 

Figure 7a. There is good agreement between the experiments and the third- 

order theory. Our data is a time series for a fixed location, but Van Dorn 

and Pazan (1975) have shown that for the growth rates of their study and of 

the present study a simple space-time equality is valid within experimental 

accuracy. Figures 7b and 7c show asymmetric wave profiles which are 

representative of several runs where waves were breaking a bit further 

downstream in the channel. The asymmetries, a, as measured by the ratio of 

one half-wavelength to the horizontal distance between the crest and the 

preceding trough, differ for the two profiles shown and are related to the 

form or type of breaking observed. This is discussed later in the section 

on breaking waves. The asymmetries of the waves will, of course, preclude 

any agreement with predicted profiles from Stokes expansions of any order 

because the latter are all syimnetric. Within the accuracy of our results 

(±3%) the phase speeds and wavelengths of steep, asymmetric waves continued 

to be well-represented by third-order predictions. This observation is 

somewhat paradoxical because the asymmetry must develop from a crest "over 

taking" the trough ahead in some way, yet our measurements do not indicate a 

significantly higher crest speed in these instances. 

The asymmetries observed in the experiments did tend to increase 

slightly along the channel for a particular run, but they remained at 

comparable values for different runs even though the steepnesses were 

different.  It was not possible, therefore, to relate the profile asymmetry 
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to the wave steepness in any systematic manner other than to note that the 

asymmetries of waves that eventually broke in the channel fell into two 

distinct ranges. The first range was 1.0 < a < 1.1 which led to spilling 

breakers, while the second range was 1.15 < a < 1.25 which led to curling or 

mildly plunging breakers. The two types of breaking are illustrated in 

Figure 12. 

At low growth rates the waves in the channel exhibited a temporal 

modulation at periods near four times the wave period. In runs that 

produced breakers at these growth rates, the breaking event became modulated 

such that almost every fourth wave broke. Sometimes there were as few as 

two or as many as four non-breaking waves between breakers. The location of 

breaking also varied somewhat along the channel. The mechanism at work here 

is assumed to be the subharmonic instability described in Section 1.1 and 

which is the subject of much recent study for the case of uniform steep 

waves. The frequencies of all measurable subharmonic disturbances fell in 

the narrow range of 0.22 to 0.28 times the fundamental wave frequency. The 

amplitude of the subharmonics reached nearly ten percent of the wave height 

just prior to breaking. These results can be compared to observations of 

wave instabilities in initially uniform, steep wave trains as shown in 

Figure 8, which is adapted from Melville (1982). The curves plotted there 

are predictions of the dominant subharmonic frequency versus the initial 

steepness ak = IT (H/L) from several stability analyses. The solid circles 

are the measurements of Melville, which are in best agreement with the 

prediction by Longuet-Higgins (1978b) shown by the solid line. The 

difficulty in comparing the present results to the uniform wave train 

results is the inability to prescribe an appropriate initial steepness for 

our data when, in fact, the steepness is forced to grow steadily by the 

channel convergence. We have plotted the present observations at two values 

of steepness corresponding to the conditions at the inlet and the outlet of 

the convergent section. This is somewhat arbitrary and is done to bracket 

the range of possible choices. Assuming that the appropriate value of 

steepness is somewhere in the middle of the bracketing values, the present 
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results  are  comparable  to Melville's  observations  and  to  the various 

theories plotted in the figure. 

The comparison with instability theory is pursued further in Figure 9, 

which is adapted from Longuet-Higgins (1978b), where the unstable region is 

shown in the plane of the modulation frequency versus the initial wave 

steepness. According to this figure and to the analogy that we are 

pursuing, the waves in the channel also ought to have exhibited unstable 

modes at one-fifth and less of the wave frequency. This was not observed in 

the present experiments and the simple analogy fails. The instability 

analysis does predict that the most unstable modes overall, as determined by 

initial growth rates, are in the vicinity of one fourth of the wave 

frequency. Evidently, these modes quickly dominate in the convergent 

channel because of their inherent growth rates and the further growth 

imposed by the channel. 

The wave-induced mean drift averaged over the water depth for steep, 

non-breaking waves was determined from Eq. (1.3.1).  The results are plotted 

in Figure 10 versus the depth-averaged, second-order Stokes prediction, U , 
P 

which is correct to third order and is given by ' 

0     ~ ,, 
U  = TT^C /  (H/De^'^^dz, (3.1.1) 

" -co 

where z is measured positive upward from the mean position of the free 

surface.  The solid line in the figure represents U = U and indicates that 
P 

the total mass transport is satisfactorily predicted by the Stokes'second- 

order theory (correct to third order). 

The phase speed and the return drift current in the channel were used 

together with the conservation relation given by Equation (1.3.6) to compare 

the observed wave growth rates with both the simple and the full conserva- 

tion requirements. The total energy was assumed to be equipartitioned into 

kinetic and potential contributions with the potential energy given by 

PE = |pg(H/2)^ = E/2. (3.1.2) 
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The errors contained in these assumptions are small and are considered 

within the accuracy of the measured variables. A detailed analysis of the 

question of energy partition was done by Van Dorn and Pazan (1975). 

Moreover, by primarily considering ratios of energy, the errors become less 

significant in any case. 

If the energy is simply conserved, the total amplification ought to be 

the square root of the ratio of the channel widths at the two locations, 

which in our facility is /6 = 2.45. As mentioned earlier and is evident in 

Figure 2, the actual growth is less than simple conservation suggests and is 

adequately described by Equation (1.3.6). 

3.2  Criteria for Wave Breaking  The limiting values of steepness H/L^ at 

the observed onset of wave breaking are plotted in Figure 11 as a function 
* dw 

of the simple or nominal energy growth rate, G = -r-.      As shown in the 
w dx 

previous section, the actual wave growth rates were somewhat less due to 

several channel effects. The quantity G is used here to facilitate compar- 

isons with the results of Van Dorn and Pazan, and it can be interpreted as a 

nondimensional rate of channel convergence in the sense that the wall slope 

is measured in units of fractional width change per limiting wavelength 

L^. For any particular wave period G is an inversely linear function of 

position along the channel. 

The limiting steepness was computed from the data in three ways. 

First, the spatially-smoothed average of eight wave cycles was used to 

obtain the solid circles in Figure 11. On this basis the observed limiting 

steepness increases slightly with G at lower overall values than were found 

previously by Van Dorn and Pazan as indicated in the figure. Next, the 

local values of the eight cycle averages were used to develop values of the 

limiting wave steepness. These data are given by the open circles and the 

bars on each point indicate the range of values obtained from the many 

individual runs. This calculation reduces the apparent dependence upon G by 

increasing the observed limiting steepnesses at the lowest values of G. 

Recalling that subharmonic modulations produced intermittent breaking at the 

lowest  growth  rates,  the  limiting  steepnesses  were  recomputed  using 
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individual, local values of only those waves which actually broke. The data 

obtained in this third way are represented by the crosses in the figure and 

the bars again serve to indicate the range of the data. The limiting 

steepnesses in these instances are increased further at the lowest values of 

G while the remaining data are essentially unchanged. 

On the basis of the third method of calculation the onset criterion for 

wave breaking becomes independent of growth rate and all other test 

parameters. The significance of this result is that a wave will begin to 

break when the local steepness reaches H/L^ =0.11 regardless of the growth 

process or processes that led to that local value of steepness. For 

example, the combination of spatial modulations and temporal modulations in 

a convergent channel produces waves whose steepnesses vary with both time 

and spatial location. The site of breaking therefore varies and follows the 

position where the local, instantaneous steepness first exceeds H/L* = 0.11. 

The present criterion for breaking is comparable to the maximum values 

found from studies of wave instabilities (0.05 < H/L^ < 0.11). The insta- 

bility criterion for initially uniform, steep wave trains only states that 

waves above the threshold will eventually lead to breakers. At the point of 

breaking the local steepness is larger and approaches H/L^ = 0.11 according 

to the observations of Melville (1982) and of Su et al (1982). Similarly, 

the surface waves generated behind a submerged, moving hydrofoil break near 

H/L* = 0.11 according to Duncan's (1983) observations. 

In a study of the breaking of deep water waves in a uniform laboratory 

channel, Ochi and Tsai (1983) found that irregular waves in the range gT^ = 

200 to 800 cm were clustered around an average value of H/L* = 0.105. The 

waves in the present experiments were in the range gT^ = 550 to 1100. Thus 

the ranges of these and the present experiments overlap and yield comparable 

results for the wave breaking criterion expressed in terms of wave steep- 

ness. Thus, it appears that an invariant deepwater breaking criterion 

exists for a local value of wave steepness H/L^ == 0.11, and it is largely 

independent of the means by which the wave reaches that value of steep- 

ness.   The simplicity of this result should be useful in the further 
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development of models to predict the occurrence of wave breaking as 

discussed by Nath and Ramsey (1974), Ochi and Tsai (1983), or by Kjeldsen 

and Myrhaug (1978). It is important to note that the onset criterion 

applies equally well to two types of breakers, spilling and curling or 

lightly plunging. 

3-3. Breaking Wave Characteristics Two types of breaking waves were 

observed in the present experiments. These have been termed spilling 

breakers and curling or mildly plunging breakers. Representative profiles 

for each type are shown in the photographs of Figure 12. As noted earlier 

the limiting steepness at breaking was the same for the two types of 

breakers. However, the ranges of wave asymmetries observed in the channel 

differed markedly with the type of breaker as listed below. 

1.0<a<l.l     ->• spilling breakers 

1.15 < a < 1.25   ->• curling breakers     ;' 

The curling or mildly-plunging breakers were only observed at the larger 

growth rates, which is to say only observed for the longer wavelengths where 

the rate of channel convergence seen by the wave in one wavelength was 

greatest. Unlike the experiments of Van Dom and Pazan, gently spilling 

breakers were also observed in the present case at these large rates 

corresponding to the curling breaker observations. The only remaining 

factor to account for breaker type was the observed difference in pre- 

breaking asymmetry. The cause of the difference in asymmetry and the 

corresponding difference in breaking type could not be established. We have 

speculated that, since most of the curling breakers occurred at or near the 

transition between the convergent section and the uniform section of the 

channel, local disturbances due to reflection and/or refraction enhanced the 

wave front steepness locally and triggered a different type of breaker. 

Whatever the cause, the effects upon energy losses due to breaking as well 

as air-entrainment processes are more pronounced as one would expect. 
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The fraction, F^, of potential energy lost while breaking is defined as 

PE - PE^ 
D 

h  =—PE  = 1 - PV^^ (3.3.1) 

where PE^ is the potential energy possessed by the breaking wave and PE is 

the energy it would have possessed if it had continued along the channel 

without breaking. For the present purposes the potential energy at a 

particular location in the channel is taken to be proportional to the square 

of the spatially-smoothed, eight cycle average of the observed waveheight, 

H(x).  The fraction of energy lost then becomes 

F^ = 1 - [H^(X)/H(X)]2 (3^3,2) 

where H(x) is projected beyond the point of breaking by an extension of the 

pre-breaking growth process. Once the uniform width section of the channel 

is reached, the denominator in Eq. (3.3.2) becomes constant. The errors 

associated with this relatively simple determination of potential energy are 

small and the same errors occur in both the numerator and denominator. Thus 

the overall effect upon F^ should be negligible, especially if the ratio of 

waveheights is close to one. 

The fractions of potential energy lost, computed in this way for all of 

the breaking wave test runs, are plotted in Figures 13a through 13g. The 

solid line in all of these graphs is representative of a 30 or 60 percent 

potential energy loss over the distance of one limiting wavelength L*. In 

all but three runs the actual loss of potential energy is initially quite 

close to 30 percent. The three exceptions exhibit much larger rates of 

energy loss and have been identified with the occurence of curling or mildly 

plunging breakers (Figures 13e and 13f). 

The waves do not continue indefinitely to lose energy through breaking, 

but they eventually cease to break and thereafter propagate as steep waves 

with a reduced amplitude and possibly a different frequency. Most of the 

data in Figures 14a to 14g were taken while the waves remained in a breaking 

condition so that the total energy lost could not be determined. The few 

instances where breaking activity ceased in the measurement interval are 
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easily seen by the limit of energy loss being reached and the fraction of 

potential energy lost becoming constant. 

The initial fractions of potential energy lost to breaking measured 

from Figures 13 are plotted in Figure 14 versus the nominal growth rate G. 

Included on the figure are solid lines taken from Van Dorn and Pazan 

representing the "equilibrium" loss of potential energy which they found 

from their experiments which included both spilling and curling breakers.. 

A major conclusion of the study by Van Dorn and Pazan was that the 

energy lost in breaking was in equilibrium with the rate of channel 

convergence. This clearly was not the case in our experiments as can be 

seen, for example, from the data in Figures 2a to 2g. The waves continued 

to break and to lose energy in the uniform section of the channel. 

Moreover, the rates of energy loss shown in Figure 13 only became apparent 

after the channel convergence effect had been discounted. 

By correcting for the effect of the channel convergence, a wave which 

commenced to break in the convergent section lost energy at the same rate 

that the wave would have experienced had it broken in the uniform section of 

the channel. 

The wave-induced mass transport under conditions of breaking waves was 

obtained in the manner described earlier for steep waves and the results are 

also plotted in Figure 10. The somewhat surprising result is that the net 

mass transport of the breaking waves, as evidenced by the uniform return 

flow in the channel, does not differ measurably from the non-breaking 

waves. It is possible that the vertical structure of the return flow 

differed and therefore higher velocity layers near the floor or the surface 

went undetected. However, these possible mean flow differences cannot 

account for the bulk of the energy lost during the breaking process and one 

is led to conclude that most or all of the potential energy lost in wave 

breaking goes directly into the production of turbulence and into the air 

entrainment processes. This is a substantial fraction of the energy in the 

wave and is indicative of the vigorous mixing which occurs during a an 

individual breaking event. 
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4.  SUMMARY AND CONCLUSIONS 

The principal conclusions of the present study can be summarized as 

follows 

• The kinematics of steep, symmetrical deep water waves are adequately 

described by third-order Stokes expansions (wave profiles, phase 

speeds, velocities, drift). 

• The energy budget within a finite-length, slowly convergent channel 

is governed by the conservation of the quantity w E (U+C/2)C, which 

is significantly different than a prediction by the simple 

conservation of potential energy. 

• Subharmonic wave instabilities were observed only near one-fourth of 

the fundamental wave frequency and then only for the lowest wave 

growth rates. 

• Asymmetry of steep waves was not found to be a function of local wave 

steepness or mean growth rate. 

• The type of breaker (spilling or curling) is determined by the wave 

asymmetry prior to breaking. 

• The onset of breaking is given by the local instantaneous value of 

wave steepness H/L^ " 0.11, independent of growth rate and 

asymmetry. This is comparable to numerous recent results under 

varied conditions and strongly suggests the existence of an invariant 

criterion for deep water wave breaking. 

• The initial spilling wave energy loss rate appears to be uniform and 

about 30 percent of the potential energy per wavelength (cycle). 

Curling breaker energy loss rates may be twice as large initially. 
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• Potential  energy  losses  due  to  breaking do  not  appear  as  a 

significant increase in the mean drift, and therefore they must be 

largely dissipated in turbulence production or in air entraininent 

processes. 

The above conclusions can all contribute to the further development and 

refinement of engineering and more basic physical models for the nonlinear 

events surrounding wave breaking in the ocean. We would be remiss if we did 

not also mention our conclusion that converging channel experiments, which 

may appear conceptually simple are, in fact, overly complex for the purposes 

of isolating and studying transitional events such as wave breaking. 
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Figure 3.   A multiple-exposure photograph of a rising tracer in the water 
column. 
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Figure 5.   A photograph of the instantaneous crest profile of a steep 
wave. 
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Figure 7. Measured wave profiles showing a) steep but symmetric waves, b) 
asymmetric waves leading to spilling breakers and c) asymmetric 
waves  leading to curling or lightly plunging breakers. 
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Figure 8.   The frequency of the dominant subharmonic instability versus 
the initial wave steepness; adapted from Melville (1982). 
A,  measured values,  present  study;  ,   Longuet-Higgins 
(1980); , Benjamin and Feir (1967). 
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(a) 

Figure 12.  Typical photographs of breaking waves which were a) spilling 
and b) curling or lightly plunging. 
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Appendix - Experimental Conditions 

First series, T = 0.75 sec. 
Bulkhead wave maker strokes (cm) = 2.10, 2.62, 2.64 

Second series, T = 0.82 sec. 
Bulkhead wavemaker strokes (cm) = 1.34, 2.39, 2.95, 3.45 

Third series, T = 0.84 sec. 
Bulkhead wavemaker strokes (cm) = 3.08, 3.45, 3.99 

Fourth series, T = 089 sec. 
Bulkhead wavemaker Strokes (cm) = 3.22, 3.40, 3.64, 3.89, 4.28 

Fifth series, T = 0.95 sec. 
Bulkhead wavemaker strokes (cm) = 4.19, 4.52, 4.82 

Sixth series, T = 1.00 sec. 
Bulkhead wavemaker strokes (cm) = 4.77, 5.23, 5.89 

Seventh series, T = 1.05 sec. 
Bulkhead wavemaker strokes (cm) = 5.29, 5.60 
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